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We first show that the classical gas-like theory of rubber elasticity is incorrect because the force-extension 
relation for an individual polymer chain is dependent on the interaction of its chain segments with segments 
of other chains in its neighbourhood. Two previous attempts by the author to formulate a liquid-like theory 
are discussed and improved. It is then argued that chain entanglements result in the value of the number 
of segments N in the expression f =  3kTx/N increasing with chain extension x or with increasing force f 
The entropic contribution to the free energy of a rubber from this effect is then shown to be given by 
B(2x2y+ 2y2~+ 2=2=,) , where B is proportional to kTand to the number of chains per unit volume. In order 
to facilitate comparison with experiment, the stress-strain equations for simple extension, biaxial extension 
and for pure shear are displayed for three different choices of strain invariants: those of Rivlin, those of 
this paper, and those of the localization model of Gaylord, Douglas and McKenna. Comparisons with 
experiment are discussed. 
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I N T R O D U C T I O N  

The classical theory of rubber elasticity consists of an 
analysis on a network of linear polymer chains connected 
at their two ends to the other chains in a (usually) 
tetrafunctional manner. Each chain is given a free energy 
which is a quadratic function of the separation between 
the ends, and the ends are assumed to move affinely. The 
theory is a gas-like theory because the segments of each 
chain are assumed not to interact with the segments of 
other chains, except for the connection at the ends. The 
assumption of non-interaction is a poor  one in view of 
the fact that the volume spanned by a chain of N segments 
varies as N 3/2 so that (segments of at least) N 1/2 other 
chains occupy this same volume. Experimental data are 
found to deviate systematically from the classical James 
and Guth expression I F=pkT(2Z~+2zr+)~). Data  for 
simple extension seem always to fall significantly below 
the theoretical curve in a plot of force versus extension 2. 
Clearly then, the classical theory needs improvement.  

The author used an extension of the Flory-Huggins  
theory that evaluates orientation dependent entropy to 
calculate the change in configurational entropy when 
stretching a rubber 3. This orientation dependent packing 
entropy reduces the force when the rubber is stretched 
uniaxially but for biaxial stretch there is very little 
change. Qualitatively, it has just the right behaviour but 
quantitatively the effect was originally thought to be too 
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small. Subsequently, Tanaka  and Allen 4 showed that the 
problem done self-consistently resulted in an effect twice 
as large as originally estimated. An attractive feature of 
these calculations is that they are independent of 
parameters, the only assumptions being those inherent 
in the lattice model. However, the effect seems too small 
to account for the deviations from classical theory. A 
modification that leads to a much larger effect is to model 
the N-step polymer as a sequence of K connected freely 
rotating sticks of aspect ratio N/K. (If the force-length 
(f-x) relation for a chain of N bonds is f=3kTx/Nl 2, 
where I is the length of a bond, then for a chain of N/CN 
rigid rods each of length CNI the force-length relation is 
f= 3kTx/CNNI 2. So, for the same force the rigid rod chain 
will be stretched more. On the other hand it is easy to 
show that if each chain is stretched to the same 
value of x then the probabili ty of the bond making an 
angle 0 with the stretch direction is proportional  to 
exp(+fCNl  cos(O)/kT) which is the same for both cases. 
However, even when the distribution of orientation 
function is the same, the change in packing entropy during 
stretch can be much greater for the longer rods.) Since 
the persistence length can be determined by other 
considerations no new parameters are introduced. This 
will not be done here because it is only part  of the 
explanation for the deviation. We think it better to gather 
the various parts before combining them into a total 
explanation. A separate contribution is the focus of this 
paper. 

Another  approach is to model the rubber  by 
considering that each chain is hemmed in by the chains 
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that surround it 5. One imagines that the surrounding 
chains and their cross-links form a web or cocoon that 
constrains the enclosed chain from wandering beyond 
the confines of the cocoon. This has obvious connections 
with tube models and the localization model 6'7. (Tube 
models, cocoon or web models, slip-ring or hoop models, 
and localization models are different ways of looking at 
the one phenomenon; they emphasize different aspects of 
the problem.) The Gaussian distribution for end-to-end 
length that characterizes a free chain is replaced by an 
infinite sum of Gaussians if we replace the web by a 
rectangular cage and use the method of images (see 
below). Specifying that the cage dimensions change 
during stretch results in a correction to the theory of 
rubber elasticity. The sum can be evaluated numerically. 
This will not be done here for reasons explained below. 

Gao and Weiner, in a series of papers s-11, argued that 
the force transmitted to the rest of the network by a single 
chain is not properly taken into account in the classical 
theory. The assumption that the total energy stored in a 
chain is given by 3kTxZ /2Nl  z is found to be a gross 
oversimplification. These papers rely extensively on 
computer calculations and are consequently hard to 
verify. The general thrust of their work is, however, 
obviously correct, as are their qualitative conclusions. 
The functional form of their equation for simple 
elongation is different from ours. 

Gaylord and Douglas 6'7, Douglas and McKenna ~1 and 
McKenna et al. 13-17 have argued for an extra term of 
the form (2x+2y+2z) based on the basic cocoon 
picture mentioned above. They determine the change 
of network chain confinement through an argument 
emphasizing chain packing. They show that in fitting to 
the experimental data the contributions from this term 
can be considerably greater than that from the classical 

2 42 2 (2~+zy +2~) term. They also stress that one must test 
rubber theories simultaneously for the three kinds of 
strain and for their predictions of swelling experiments 
and of the effects of cross-link density variations in order 
to have a believable theory. Earlier, Varga had suggested 
this form based on phenomenological considerations ~s. 
The work of Edwards and Stockmayer 19 is also relevant. 

Tube models 2°-25 and slip-ring models 26 29 have been 
used to model both excluded volume effects and 
entanglement effects. A relatively recent review by 
Edwards and Vilgis 3° deserves special mention. 

In this paper we will develop an insight as to why the 
entropy contribution to the total free energy arising from 
a chain of N monomers tied to the network by its end 
monomers is not 3kTxZ/2N12. We will do this by showing 
how the presence of the chain near a plane surface 
modifies the stored energy, by showing the equivalence 
between a configurational and a kinetic view of stored 
energy and by observing that the chain does not sample 
all its configurations during the timescale of the 
experiment. 

Next, we replace the chain anchored at its two end 
points which move affinely, by a chain anchored at its 
two end points and threaded through a slip-ring: the end 
points and the slip-ring are assumed to move affinely. 
This leads naturally to the term (2x2y + 2y2= + ~=2~). The 
connection with other slip-ring models is discussed. 

We display and develop the stress-strain equations for 
simple elongation, biaxial stretch and pure shear for three 
different choices of strain invariants. Comparison with 
experiment is discussed. 

THEORY 

Insights  into the forces  on a single chain 

The s tress-s train relation for  a polymer near a 
surface. A polymer placed above the z = 0 plane, which 
is viewed as an energy neutral barrier to segments being 
below the plane, has a number of configurations Ps N 
given by31: 

p = (2z~NI2/3)- 3/2 exp{ [ -  (Z 2 - -  Z1)  2 - -  (X 2 - -  X 1 )  2 

- (Y2 - YI)Z]/(2N12/3)} - (2rcNl2/3)- 3/2 

x exp{ [ - (z 2 + z l )  2 - (x 2 - x 1) 2 - (Y2 - YOZ]/(2NlZ/3)} 

(1) 
where 1, 2 label the ends, I is the segment or bond length 
and s measures the configurational freedom of one bond. 
The reflection principle 32 which was used to derive 
equation (1) states that the number of walks from i to 2 
in the presence of a plane boundary is equal to the number 
of walks from 1 to 2 in the absence of a boundary minus 
the number of walks from the image of 1 in the plane to 
2 in the absence of a boundary. This number is obviously 
very different from the free chain case. In the limit z~ ~ 0  
we have (dropping the subscript 2 and starting the chain 
at (0, 0, 0)): 

P = 2~1(2~N12/3)- 5/2z exp[( - z z - x 2 - -  yZ)/(2N12/3)] 

(2) 
The entropy associated with this chain is: 

S = k In W= k(ln z - 3 R 2 / 2 N l  2) (3) 

and the associated force is33: 

f =  grad(TS) 

£ = k T ( 1 / z -  3z/NI2), f x  = - 3 x / N l  2, fy = - 3 y / N F  

(4) 

The force is composed of the usual Hookean force which 
is proportional to the distance between end points, 
always tending to pull the ends together, plus a force 
perpendicular to the plane, varying inversely to z and 
always tending to push the point away from the plane. 
To obtain further insight into the nature of these forces, 
imagine the plane plus the one chain tethered to the plane 
at one end to be isolated from all other matter. The 
monomer units are constantly bombarding the surface 
because of Brownian motion. But we know the system 
cannot accelerate continuously in space so this means 
the chain is tugging at the surface with a force equal and 
opposite, on average, to the impulse from Brownian 
bombardment. This tugging arises from the monomer 
units bouncing away from the surface and then being 
decelerated by the inextensible chain. The tension in the 
chain is certainly not constant and it is different at the 
two ends. 

The energy stored in the stretched chain depends then 
on the chain end-to-end length as well as on the 
separation of the end points from the plane. If surfaces 
are used to represent the confinement of the chain by the 
other chains in a rubber, then the total stored energy will 
depend on these surfaces as well as on the end-to-end 
length of the polymer being confined. A particularly 
appealing geometry for the cage is to imagine that every 
chain is within a rectangular parallelepiped, as in 
Figure 1. The method of images can be used to construct 
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Figure 1 A polymer  in a box with adsorbing boundary  condit ions 
has a probabil i ty P given by a sum of Gauss ian  sources. Notice that 
P ~ O  for every vertical and horizontal  plane shown as lines in this 
figure. The z = constant  planes are treated similarly 

the following infinite sum, which gives the probability 
for the end-to-end distribution for absorbing boundary 
conditions on the walls: 

P = E2 ( -  1)J(/32/n) 1/2 exp{ - / 3 2 [ x 2 -  ( -  1)ix1 - j a ]  2}] 

x [ 2 ( -  1)J(fl2/Tc) 1/2 exp{ - f12 [Y2 - ( - -  I)JYl  - j b ]  2}] 

x E g ( -  1)J(flz/zc) 1/2 exp{ -/32[z 2 - ( -  1)Jza - j c ]  2}] 

(5) 

where/32= 3/2N12, and the origin of coordinates is at the 
centre of the parallelepiped and the summation over j in 
each of the sums is over all real integers. This is a 
generalization of a formula given previously 5. See also 
the work of Gaylord 34-36. Fourier methods 37 can also 
be used to give: 

P = {(2/a)Z exp[-( jM/a)ZNF/6]  sin(jrcxz/a) sin(jzcxl/a)} 

{(2/b)57 e x p [ -  (jr~l/b)ZNF/6] sin(jrcx2/b) sin(jrcXl/b)} 

{(2/c)Z exp[ - (jrcl/c)Z NlZ/6] sin(jzcx2/c ) sin(jzcx 1/c)} 

(6) 
Either of these two expressions can be used to replace 
the single Gaussian representing the probability of 
end-to-end length of a chain in free space. We shall not 
carry the treatment further because the box dimensions 
are parameters that could be used to fit the data. If the 
stress-strain curves had lots of structure, as for example 
in one of the various spectroscopies, then we might 
argue that this is a useful procedure, but because 
the stress-strain curves are rather featureless such 
a procedure would be tantamount to curve fitting. 
However, the equations may be useful in assessing the 
effects of varying cross-links or volume fraction of solvent. 

Another way to model the cocoon is to employ a 
harmonic oscillator potential about the axis of the tube, 
as was done by Gaylord and Douglas 6'7. 

A kinetic versus phase space view. In explaining the 
forces on a chain near a plane surface we qualitatively 
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discussed the Brownian motion of monomers impinging 
on the plane and the resulting tugging by the attached 
chain end as the segments are restrained by the 
inextensible chain. Discussing the problem via its 
kinetics added insight. A simple problem that illustrates 
quantitatively the duality is a trimer held at its two ends 
so that the only motion is the middle monomer moving 
about a circle whose centre bisects the straight line 
connecting the two end monomers and whose plane is 
perpendicular to this line 38. If the radius of the circle is 
r, the separation between ends is x and the bond length 
1/2 so that r2=(I/2)2-(x/2) 2, then the phase space 
available to the centre monomer is 2hr. The forcefa long 
the x axis is by standard argument: 

f = - k r  ln(27cr), f =  - QF/Ox = kTx/(12 --  x 2) (7) 

We can get this same result by a kinetic argument. The 
centrifugal force is mvZ/r and we must have: 

f dx = (mv2/r) dr, dr/dx = x/4r, f =  (mvZ/r) dr/dx 

= mv2x/4r 2 = kTx/(l 2 - x 2) (8) 

The last equality makes use of the equipartition theorem. 
The above development is strictly analogous to the two 
ways to calculate the equation of state for an ideal gas: 
the phase space approach and the kinetic approach. 
The generalization of the kinetic approach to higher 
molecular weight has not yet been accomplished, but we 
can solve the problem approximately. (For an N-segment 
polymer we imagine the polymer to rotate rigidly about 
the axis drawn through the end points of the polymer 
that are fixed in space. We use Kubo's expression3 v, which 
is f =  [2x/(12- xZ)](pZe/I)= kTx/(l 2 - - X 2 ) ,  where the second 
bracketed term is the rotational energy about the axis, I 
is the moment of inertia, and 1/2 is the distance to the 
centre of mass. For  very small x we can treat our system 
as a ring so that (//2) 2 is the square of the radius 
of gyration of a ring which is NlZ/12 where N1 
is the bond segment length. Substituting we obtain 
f=3kTx/Nl~.  Although the formula is correct this 
derivation is approximate because we have not calculated 
the contributions from the other modes of motion.) 

The kinetic approach suggests that the neighbours to 
the segments of a given chain influence strongly the 
stress-strain relation since they interfere with the motion 
of the chain. 

Accessibility of  phase space. If a monomer unit has 
say four different locations relative to its preceding 
segments in the chain, and if the chain length is 100, then 
we have 4 l°° = 1.6 x 106° distinct conformations, each of 
which must be sampled in order for statistical mechanics 
to be applicable. Now if we assume the rather generous 
sampling rate of 1015 per second per monomer then the 
chain is visiting 1017 configurations per second. Since 
there are 3.156 x 107 s in a year we see that it would take 
at least 5 x 1035 years for each chain shape to be visited. 
We can also ask the question: how small would the chain 
length have to be so that there is a reasonable expectation 
that the configurations of a chain can be sampled in the 
timescale of the experiment, which we take to be 1 s? A 
simple calculation shows that the chain length is less 
than 28. The problem of accessibility of phase space is 
common to many statistical mechanics problems 39'4°, 
but the suggestion in the context of rubber elasticity is 
that perhaps we can obtain an insight into the behaviour 
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of rubber by considering portions of the chain that are 
less than the full distance between cross-links. 

Insights from general phenomenological principles 
Stability. One would expect that for infinitesimal 

strains the strain energy function of an isotropic block 
of rubber would be subsumed under the general form: 

F = (2/2)(xx + y, + z=) 2 + #[x~ + y~ + z 2 + (x 2 + y2 + z~)/23 

(9) 
which is the most general form possible for an isotropic 
material which is both quadratic in the strain and positive 
definite (see, for example, ref. 41). However, the classical 
expression for rubber elasticity: 

2 2 2 F = kTN~(2 x + 2y + 2=) (10) 

is neither quadratic in the strain nor is it positive definite. 
Using: 

2 x = l + x x ,  2 y = l + y y ,  2==1+z~ (11) 

and choosing principal axes for the strain we obtain: 

F/kTN~ = ().~ + )zy 2 2 2 2 + 2=) = x~ + yy + z= + 2(x x + yy + z=) + 3 

(12) 

Dropping the '3', since it can be of no importance for 
free energy, we see that choice of negative infinitesimal 
strains gives a free energy that is opposite in sign to that 
for positive strains. This violates thermodynamic stability 
requirements. Also, the expression is manifestly not 
quadratic. 

However, if we assume constant volume, as we shall 
now do, the expression is positive definite. The condition 
for constant volume is 2x~y2 ~ = 1 or using equation (11): 

x~,= -(yy+z=+yyz=)/(1 +yy+z=+yyz=) (13) 

The condition for constant volume can also be written as: 

xx+yy+z== --(xxyy+yyz=+XxZ=)--xxyyz = (14) 

which, when we substitute from equation (13) for xx on 
the right-hand side and expand in ascending powers of 
yy and z=, gives: 

xx + yy + z~ = y2 + z 2 + yyZ= + higher order terms (15) 

Now the condition for a quadratic form to be positive 
definite is that the determinant formed by the coefficients 
of  A x  2 + Bxy + Cy 2 be positive; or 

A,B B/2 > 0  
(16) 

B/2, C 

Since A = B = C = 1, the value of the determinate is 0.75. 
So Xx+yy+z= is positive definite and therefore from 
equation (12) so is (22 + 22 + 2~), provided that we assume 
constant volume. In like manner we can show that 
(2x2y + 2y2= + 2=2x) is positive definite, so all three terms 
are permissible candidates for free energy insofar as they 
do not violate stability conditions when constant volume 
is assumed. 

Expansion in strain invariants. Because the unstressed 
rubber is isotropic, the free energy needs to be a symmetric 
function of the 2s. Any symmetric function of the 2s can 
be expressed as a function of three independent strain 

invariants. A choice recommended by Rivlin 42 is: 

I2 = + + ( L , L Y  

i3 = ~2~2~2 (17) 

We shall argue for use of the invariants: 

I'~=I~, I~=(2~2y+2y2=+2=2~), F3=I3 (18) 

while Gaylord and Douglas 6,7 and Douglas and 
McKenna 12 have used 11, 13 and 

2=Zx+2y+2z  (19) 

A function of one set ofinvariants can always be expressed 
as a function of another set. For  example, the relation 

12 = (I~) 2 -- 2113/2(I1 + 2I~) 1/2 (20) 

allows us to re-express the free energy, which was 
originally expressed in terms of 11 and 12, in terms of the 
invariants of equation (18). Naturally we would hope to 
find that the expansion for free energy is a linear 
combination of 11 and I~ (or 11 and 12). 

By expanding the free energy as a power series in &2i: 

F = F o + OF/O,~i~?2 i + 632ff/O2i,~jO)clc32j (21) 

and using the constant volume relation M 3 --0, and the 
fact that F is symmetric in the 2s it is easily shown that 
the forces are all zero when the 2s are each equal to 1 
and also that the quadratic term is positive definite. 

The stresses in a rubber can easily be calculated in 
terms of derivatives of the free energy function. Rivlin 42 
obtains the equations: 

pi=22~.OF/~I1-22f2~F/OI2-P, j = x ,  y, z (22) 

These three equations plus 2x2y2 = = 1 determine the 2x, 
2y, 2= in terms of the Px, Py, P= and conversely. P is an 
undetermined multiplier. (If one minimizes a function F 
subject to the constraint condition V= c then the value 
of the undetermined multiplier depends on the specific 
form of F. That is to say V= c can be substituted into F 
to give various forms for F and these various forms 
give different undetermined multipliers. Thus, giving a 
physical interpretation to an undetermined multiplier is 
dangerous. The physics of the three equations (22) is 
obtained by eliminating P. Similar statements apply to 
equations (23) and (24).) 

The analogous equations for the set of equations (18) 
are: 

p j = 2 2 ~ f / ~ I 1 - 2 f 1 ~ f / ~ I ' z - P  ', j = x ,  y, z (23) 

while the set of equations (19) gives: 

pj=22~c3F/OI 1 -)~j~F/OI'~-P", j = x ,  y, z (24) 

These equations give different expressions for the cases 
of simple elongation, biaxial stretch and pure shear 
(equivalent to simple shear). 

The appearance of the stress equations depends on 
which set of invariants we use. For  three different sets of 
invariants we have, for the case of simple elongation: 

2y=2==1/~/2, 2x=2, pr=p==0, 11=22+2/2,  

I a = 1 (simple elongation) 

Px = 2( 22 - 1/2)(0F/011 + 2-10F/QI2), 12 = 22 + l/J, 2 

(25) 
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px=2(22--1/2)OF/Oll+(x/2-2-a)OF/#I~,  

p~ = 2(2 2 - 1/2)#F/#II + ( 2 -  2-1/2)0F/0I'~, 

Fo r  pure shear we have 

2 y = l ,  2x=1/2~, p~=0,  

13 = 1 (pure shear) 

p ~  = 2 ( 2  ~ - 2 -  =Xar/aI1 + aF/a~zX 

Pr = 2(1 - 2 -  2)aFOI~ + (22 - 1)aF/OI 2 

Px = 2( 22 -- 2 -  2)#V/aI1 + (2 -- 1/2)#F/OI'2, 

py =2(1 -2 -Z)aFOI1  +(2-1)~3F/0I'2 

p~ = 2(22 - 2 -  2)~F/~I1 + (2 - 1/2)~F/OI'~, 

py = 2(1 - 2 -  2)~F~I1 + (1 - 1/2)OF/OI'~ 

I~ = 2x/2 + 1/2 

(26) 

I~ = 2 + 2/,,/2 

(27) 

11 = 22 + 1 + 1/22, 

12 = 2 2 + 1 + 1/22 

(28) 

(29) 

/~=2+1+1/2 
(30) 

(31) 

I ~ = 2 + 1 + 1 / 2  

(32) 

(33) 

Fo r  biaxial stress one could have different stretch ratios, 
but  we will assume: 

2 x = 2 y = 2 ,  p~=0,  I 1 = 2 2 2 + 2  .4  , 

13 = 1 (biaxial stretch) 

Px = Ps = 2( 22 -- 2 -  4)(QF/~I1 + 22~3F/~I2), 12 = 24 + 22-2  

(34) 

px = p, = 2(22 - 2 -  4)8F/011 + (2 2 - 2 - 1 ) c 3 F / 0 1 2 ,  

I~ = 22 + 22-1  (35) 

Px = Pr = 2( 22 - 2 -  4)~F/~311 + (22 - 2 - 2)0F/c312, 

I~ = 22 + 2 -  2 (36) 

Not ice  how closely equat ions  (34)-(36) and equat ions  
(25)-(27) are related th rough  the t rans format ion  22--* 1/2. 
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A free energy which is linear in the first two invariants  
of equat ion  (17) or of  equat ion  (18) or  of equat ion  (19) 
would obey the Valanis-Lande143 separabil i ty condition. 
No te  that  equat ion  (30) for pure  shear, which is derived 
f rom the invariants  of equat ion  (18), is identical to 
equat ion  (32), which is derived f rom the invar iants  of 
equat ion  (19). Thus  a free energy that  is linear in 11 and  
I~ cannot  be distinguished f rom a free energy that  is 
linear in I1 and I~ by pure  shear measurements  of  Px 
alone. Note  that  it makes  good  sense to test these relations 
for the free energy against  exper iment  since it is 
known that  A I I + A I  z does not  accurately represent  
experiments  44,45. 

Finally, we do not accept the argument  used previously 42 
that  the free energy needs to be an even function of the 
2s. Negat ive  2s have no physical  meaning.  

Derivation of  the ( 2 x 2 y  4- 2y2 z + 2z2x) term 
If we examine the s t ress-s t ra in  curve for simple 

extension and compress ion  we see that  the experiments  
fall below the theoretical  curve in the extension range, 
but  in the compress ion  or biaxial extension range the fit 
is very good  z. F r o m  equat ion (4) we see that  if the n u m b e r  
of chain segments  were somehow to increase as we 
stretched the chain, the forces would be less than  the 
classical value. Is there anyth ing  going on within a rubber  
that  can be interpreted as increasing N? Figure 2 gives 
five possible ways to increase N as we stretch. The  first 
way is to imagine N1 segments  to be adsorbed  in a sphere 
and N 2 segments to comprise  the por t ion  of the chain 
outside of  the sphere (N 1 + N z = N). Stretching pulls out  
some segments  f rom the sphere, increasing the n u m b e r  
of segments  in the elastic por t ion  of the chain. 

This is a disguised form of the z ipper ing-unz ipper ing  
model  used originally to gain insight into the he l ix - random 
coil t ransi t ion in D N A  46. I t  can result in cons tant  force 
as a function of e longat ion 32. Higgs and Ball 27 treat  a 
slightly different model  in the context  of  gels. These 
models  are useful for modell ing the non-ent ropic  par t  of  
the s t ress-s t ra in  curves. The  second figure has N 1 chains 

X _ _  K 

a b c d e 

Figure 2 A progression of ideas suggested in (a) to (d) shows that the effective value of the number of segments in a chain increases when the 
chain is stretched. The model we settle on is that of (e), where the end points and slip-ring move affinely and the numbers of segments in each of 
the two legs adjust themselves to minimize the chain free energy 
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wrapped on a spool and as x is increased they are pulled 
off into the free part of the chain. The spool has a rotary 
spring constant cc The relevant equations are: 

f =  3kTx/(U2 + AN0, f =  c~AU~ (37) 

f =  - czN2/2 + [(~xN2) 2 + 3kT~x] 1/2 
.~ 3k Tx/N 212 -- 9(k Tx)Z/N3 24c~ (38) 

so that the force is diminished by a pulling out of the 
segments into the Gaussian portion of the chain. 
However, there are no hollow spheres or spools in a 
rubber. Figure 2b suggests Figure 2c. When the chain 
end is pulled, the slack that resides about the three pivot 
points (cylinders perpendicular to the plane of the 
drawing) is reduced and the value of N2, the number of 
segments in the chain between the two xs, is increased. 
This picture may well be a meaningful characterization 
of the constraints suffered by a typical polymer chain. In 
Figure 2d the horizontal chain that threads through the 
loop of the vertical chain represents a more realistic 
situation, which must occur often considering that there 
are at least N 3 /2 -  N segments from other chains in the 
vicinity of segments of the one chain. Here, too, the slack 
around the horizontal chain can increase N 2 during 
stretching of the vertical chain. 

We model these constraints with the model of 
Figure 2e. The xs indicate cross-links and the ring is a 
slip-ring that allows the values of N 1 and N 2 to change 
when the cross-links and the slip-ring move affinely. One 
line connecting the cross-link to the slip-rings lies in the 
x direction, the other line in the y direction. We imagine 
equal numbers of each of the possible pairs to represent 
a real isotropic rubber. There are 12 distinct pairs not 
counting the xx, yy and zz pairs. The force in the x 
direction equals the force in the y direction. The problem 
is much like the problem of a rope running over a pulley. 
If we neglect friction then we have equal tension in both 
legs of the rope. 

fx = 3kTx/Nx, fy = 3kTy/N2, fx =fy, 

from which we find that: 

x/U 1 = y/U 2 = (x + y)/U 

Now 

N 1 + N 2 = 1 

(39) 

(40) 

(3k T/N) dF =f= dx + fy dy = (x + y)(dx + dy) 

=(x+y)  d(x+y)=d(x+y)2/2 (41) 

So that 
F = (3kT/N)(xo2 = + Yo2y) 2 (42) 

x o and Yo being the unstretched values of x and y. 
Equation (42) obtains when the two legs lie one in the x 
and one in the y directions. There are 12 distinct pairs 
not counting the xx, yy and zz pairs. We imagine equal 
numbers of each of the possible pairs. Averaging over 
the initial separations we obtain: 

F/k T= E{g(roj)[(Xo 2= + Yo•y) 2 ÷ (yo2y + Zo2=) 2 

+ (z o 2= + Xo 2=,) 2] } (43) 

where # is the distribution function for the legs. 
Combining equation (43) with the classical term we see 
that our final expression for the free energy is: 

F/kT= 2 2 2 A(2= + 27 + 2=) + B(2=27 + 272= + 2z2=) = AI~ + BI'2 

(44) 

One might want to estimate the extent to which the 
segments are concentrated in the lengthening leg during 
stretch. As an example, if we assume simple elongation 
then xoc2=, yoc2y, and using equation (40) we obtain: 

Nt /N  = 2/(2 + 1/~/).) (45) 

Thus the model verifies our intuition. However, although 
equating forces in each leg is permissible for a macroscopic 
situation, such as in ropes over a pulley, one might 
question it for the case where the force arises from 
Brownian fluctuations. To answer this question we 
discuss the partition function for Figure 2e. 

Qs = ~ Q(x, NOQ(y, N2) (46) 
N1 + N 2 = N  

Q(x, NI) = (2nN1/2)- 3/2 exp( - 3xZ/2Nll 2) (47) 

Figure 3 is a plot of the partition function before 
summation versus NI for various values o fx  and y. When 
x and y have values near their average dimensions, 
(x  2) = ( y 2 ) = N / 3 ,  the curve is symmetrical and reaches 
a maximum at N~ = N/2, as the bottom-most symmetrical 
figure shows. For  smaller x = y  the curve is bipolar, as 
the top-most figure shows. The asymmetrical curves show 
that the segments tend to migrate to the longer leg. Thus 
our intuition is verified also by the more accurate 
description of equation (46) as well as the more 
approximate view of equation (40). 

The bimodal characteristic of the distribution function 
for a chain pinned at a middle position was first used to 
justify the chain-folded model of polymer crystallization 47. 
It was argued that the size of an amorphous loop 
connecting two crystal stems would be very small because 
the segments preferred being in the amorphous chain 
end that had not yet incorporated into the crystal. 
Mansfield 49 and Rieger s° have more complete discussions 
of the statistics of pinned chains. 

As soon as it is recognized that equation (46) is a 
convolution, one can generalize it to include any number 
of slip-rings. Higgs and Ball 2v, Aldolf 2s and KOSC 29 have 
slip-ring theories but they do not reach the same 
conclusions on the functional form of the stress-strain 
laws. In an interesting paper, Higgs and Ball 26 obtain a 
cross term (2=27 +,~y2z+ 2=2x). However, there are three 
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Figure 3 Probability that a chain has N 1 statistical lengths in a leg 
of length x and 100-N 1 statistical lengths in the leg of length y. For 
the symmetrical curves starting from the top: x/l=4, y/l=4; x/l=4.9, 
y/1=4.9; x/I=5.77, y/l=5.77. For the upper asymmetrical curve 
x/1=5.77, y/l=4 while for the lower curve x/1=5.77, y/l=7. For the 
bimodal curves there is an entropy barrier impeding transfer of segments 
between the maxima. But stretching can drive the segments into the 
longer leg, as the asymmetric curves show 
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difficulties that render the convolution approach less than 
definitive. First, the integration over N~ is from x~/1 to 
N, not from 0 to oe. Second, the system cannot possibly 
sample all allowed configurations, as discussed in the 
previous section. Third, the steepest descents method does 
not treat the bifurcation of the stationary point. 
Nevertheless, the convolution approach strongly suggests 
that the important variable of slip-ring theory is 
(2~+ 2 r + 2=) z and equation (44) is suggested as a first 
approximation. 

DISCUSSION AND C O N C L U S I O N  

The gas-like theory of rubber elasticity in which the 
polymer chains constituting the rubber do not interact 
with each other except through the cross-links is wrong. 
It is wrong because the statistics of a polymer chain 
depend very strongly on the other polymer chains that 
intertwine with it. Three improvements to the gas-like 
theory are discussed. 

The first improvement is to modify a liquid-like theory 
proposed previously, which computes the orientation 
dependent packing entropy. This entropy was shown to 
contribute a qualitatively correct correction but it was 
too small. It is observed that the magnitude of the effect 
will be much larger if the chain is modelled as Nil 
segments (rigid rods) of length l rather than N segments 
of unit length. 

The second improvement is to modify a theory 
proposed earlier in which each chain is imagined to be 
enclosed in a cocoon formed by the chains and 
cross-links that surround the central chain. This cocoon 
is modelled as a rectangular paralMepiped rather than 
as a rectangular cylinder. Equations are given for the 
statistics of the central chain. 

The third improvement arises from entanglements, and 
is different from the cocoon effect. We arrived at our 
improvement by assuming that the effective value of the 
number of segments per chain is increased as the chain 
is stretched. This effect arises from a picture in which 
the chain is constrained by slip-rings. The result is 
equation (44), which contains, in addition to the classical 
(,~ ~ +2y +2=) term, a term linear in (2~2y+2y2=+2=2~). 
This model has much in common with the work of Higgs 
and Ball, who treated the slip-ring model and showed 
that it is not always equivalent to the tube model. A tube 
model in which one tube is entangled in another tube, 
as in Figure 2d (imagine a tube around each of the two 
chains), gives results different from non-entangled tubes. 
In the cocoon model some of the chains can be modelled 
as the threads of the cocoon, but the chains that are 
entangled cannot; which of the entangled chains would 
one place as threads of the cocoon and which as the 
central chain? So, we must complicate Figure 1 by 
imagining (at least) one other chain entangling with the 
central chain in the manner of Figure 2d. 

We do not implement all three improvements 
simultaneously in this paper because we do not know the 
relative weights of the three contributions. Since the sum 
of the relative weights adds up to 1, this would introduce 
two unknown parameters. Additionally, the dimensions 
of the parallelepiped are two unknown parameters. Thus 
we would have introduced four parameters to explain 
relatively featureless stress-strain curves. We think it best 
to refrain from combining all three effects until we can 
do it with fewer parameters. 

L/quid-like theory of rubber elasticity: E. A. Di Marzio 

Formulas are given for the behaviour of a rubber in 
terms of (2x 2 + 22 + 2=2) and (2x2y + 2,2z + 2z2x) viewed as 
strain invariants when constant volume is assumed; for 
simple elongation, for b/axial stretch and for pure shear. 
For comparison purposes, analogous expressions are 
given for the classical I1, 12 invariants and also when the 
invariants 11, and I~ = (2= + 2y + 2z) are used. It should be 
noted that we do not accept the statement that the free 
energy needs to be an even function of 2=, 2y, 2z. 

The question naturally arises as to whether the added 
term results in better fits to experiments. We can compare 
the three sets of equations for simple elongation and 
compression. Assuming linearity of free energy in the 
strain invariants and use of equations (25)-(28) results in: 

fl=AI(~.- 2- Z)+ BI(1-,~- 2), I2=()vx2y+ )~r2z+,~z2x) 
(48) 

fz= A2()c-~.- 2)-b B2()~- l/2-,~- 2), Ii=(~,x~r-b ~y~.z-l- 2z~x) 
(49) 

fa=A3(,~--2-2)+B3(1--2-3/2), I~ =0~= + 2r + 2=) (50) 

These are plotted as [ f ~ -  A;(2- 2-  2)]/Bj(~.- 2-  2) in 
Figure 4. Because the curves are so different it seems that 
we should have no trouble in deciding which curve best 
fits the data. From the work of Rivlin and Saunders 44'45, 
and Gumbrell et al. 51, which were limited to 0.5 < 2-1 < 1, 
we see that the data can be represented as a straight line. 
Only two of the curves in Figure 4 seem able to fit the 
data; however, we need data over a wider range of ). to 
decide. Treloar displays a composite curve as Figure 5.3 
of his book on rubber elasticity z in which the data cover 
a range of 2 from less than 0.4 to 2. This curve definitely 
agrees with the classical form in the compressive range. 
This means that the straight line curve of our Figure 4 
is a poor representation and that the more horizontal 
curves will represent the data better in this region of 2. 
Higgs and Gaylord 52 give a detailed comparison of 
experiment to the various theories. Their general 
conclusion is that entanglement theories fit the data much 
better than non-entanglement theories. 
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Figure  4 Reduced  force versus 1/2 for s imple  e longat ion--compress ion.  
See text  for defini t ion of reduced force: - - ,  the M o o n e y  version;  
• "., the loca l iza t ion  model ;  ~, the fo rmula  suggested in the text. The 
classical  fo rmula  is represented  by  a hor i zon ta l  l ine 
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Figure 5 Force versus extension: , classical curve; - - - ,  ..., 
Mooney form (lower curve on right, upper curve on left) and localization 
model (upper curve on right, lower curve on left). These three curves 
are sufficiently coincident to adequately represent the data within this 
range of 2. They suggest that questions of reversibility, relaxation times 
and subtle experimental questions need to be addressed if one is to 
favour one over the other 

Douglas  and  M c K e n n a  12 have compared  their 
expression, which is l inear in the I t  and  I~ invariants ,  to 
experiments for simple shear and  obta ined an excellent 
fit. This means  that  our  equat ions  also give an excellent 
fit for this set of experiments, since our  equat ions  are 
virtually the same as theirs for pure shear. To see this, 
compare equat ions  (30) and  (32), which are identical. 
Equat ions  (31) and  (33) differ in the coefficients ( 2 - 1 )  
and  (1 - 1/2). If we expand them in 5 = 2 - 1  we obta in  5 
and  ( 5 -  52+  5 3 . . . .  ) which are the same to first order in 
5. Thus  the equat ions are very much  alike for pure shear 
and  therefore also for simple shear. However,  equat ions  
(28) and  (29) coupled with the assumpt ion  that  the free 
energy is l inear in 12 do not  do as well. 

Our  final figure (F igure  5) shows how difficult it is to 
decide on the correct formula with one kind of 
s tress-strain data  alone. Since there are two parameters  
in each of the equat ions (48)-(50) we can choose them to 
give the experimental  values at 2 = 0 . 5  and  2 = 2 .  The 
results in F i g u r e  5 suggest that  it is difficult to decide 
on a best equation.  A compar ison  of theory with 
measurements  made on the same, well-characterized 
material  for the three different modes of strain is needed 
to decide which of the three expressions best fits 
experiment. Relaxat ion effects also need to be considered. 

It  must  be remembered that  the three separate 
improvements  by the au thor  treat separate effects and  
that  a real rubber  contains  these effects in an as yet 
undeciphered synergism. The local packing term which 
arises from bond  or ienta t ion  is distinctly different 
from the combined  effect of caging and  entanglements.  
Also, the cocoon or web or cage or tube model  is different 
from the en tanglement  model  in that  different aspects of 
the topology are being considered. The cocoon model  
does no t  account  for entanglements  within the cocoon. 
So we conclude that  a correct theory of rubber  elasticity 
must  incorporate  all three effects. This view has as its 
corollary the observat ion that  a good fit of experimental  
da ta  to a theory that  incorporates  only one of the effects 
is p robably  fortuitous. 
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